metabelian, supersoluble, monomial
Aliases: C62.85C23, D6⋊C4⋊12S3, C6.42(S3×D4), D6⋊Dic3⋊12C2, (C2×C12).203D6, C3⋊Dic3.44D4, C6.35(C4○D12), (C2×Dic3).34D6, (C22×S3).20D6, C32⋊8(C4.4D4), C6.65(D4⋊2S3), C2.17(D6⋊D6), (C6×C12).239C22, C3⋊3(C23.11D6), C2.19(D6.D6), C2.12(D6.4D6), (C6×Dic3).18C22, (C2×C4).98S32, (C3×D6⋊C4)⋊10C2, (C3×C6).58(C2×D4), (C4×C3⋊Dic3)⋊18C2, C22.123(C2×S32), (C2×C32⋊2Q8)⋊5C2, (S3×C2×C6).35C22, (C2×D6⋊S3).7C2, (C3×C6).70(C4○D4), (C2×C6).104(C22×S3), (C2×C3⋊Dic3).138C22, SmallGroup(288,563)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.85C23
G = < a,b,c,d,e | a6=b6=c2=d2=1, e2=a3b3, ab=ba, ac=ca, dad=a-1, ae=ea, cbc=b-1, bd=db, be=eb, dcd=a3c, ece-1=b3c, ede-1=b3d >
Subgroups: 650 in 167 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C2×D4, C2×Q8, C3×S3, C3×C6, Dic6, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×C6, C4.4D4, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, S3×C6, C62, C4×Dic3, D6⋊C4, D6⋊C4, C6.D4, C3×C22⋊C4, C2×Dic6, C2×C3⋊D4, D6⋊S3, C32⋊2Q8, C6×Dic3, C2×C3⋊Dic3, C6×C12, S3×C2×C6, C23.11D6, D6⋊Dic3, C3×D6⋊C4, C4×C3⋊Dic3, C2×D6⋊S3, C2×C32⋊2Q8, C62.85C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4.4D4, S32, C4○D12, S3×D4, D4⋊2S3, C2×S32, C23.11D6, D6.D6, D6⋊D6, D6.4D6, C62.85C23
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 93 11 91 9 95)(8 94 12 92 10 96)(19 28 23 26 21 30)(20 29 24 27 22 25)(31 42 33 38 35 40)(32 37 34 39 36 41)(43 49 45 51 47 53)(44 50 46 52 48 54)(55 61 57 63 59 65)(56 62 58 64 60 66)(67 78 69 74 71 76)(68 73 70 75 72 77)(79 88 83 86 81 90)(80 89 84 87 82 85)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 55)(7 51)(8 52)(9 53)(10 54)(11 49)(12 50)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)
(1 34)(2 33)(3 32)(4 31)(5 36)(6 35)(7 75)(8 74)(9 73)(10 78)(11 77)(12 76)(13 38)(14 37)(15 42)(16 41)(17 40)(18 39)(19 47)(20 46)(21 45)(22 44)(23 43)(24 48)(25 50)(26 49)(27 54)(28 53)(29 52)(30 51)(55 80)(56 79)(57 84)(58 83)(59 82)(60 81)(61 89)(62 88)(63 87)(64 86)(65 85)(66 90)(67 92)(68 91)(69 96)(70 95)(71 94)(72 93)
(1 30 13 20)(2 25 14 21)(3 26 15 22)(4 27 16 23)(5 28 17 24)(6 29 18 19)(7 86 94 82)(8 87 95 83)(9 88 96 84)(10 89 91 79)(11 90 92 80)(12 85 93 81)(31 46 41 51)(32 47 42 52)(33 48 37 53)(34 43 38 54)(35 44 39 49)(36 45 40 50)(55 70 66 74)(56 71 61 75)(57 72 62 76)(58 67 63 77)(59 68 64 78)(60 69 65 73)
G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,93,11,91,9,95)(8,94,12,92,10,96)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41)(43,49,45,51,47,53)(44,50,46,52,48,54)(55,61,57,63,59,65)(56,62,58,64,60,66)(67,78,69,74,71,76)(68,73,70,75,72,77)(79,88,83,86,81,90)(80,89,84,87,82,85), (1,56)(2,57)(3,58)(4,59)(5,60)(6,55)(7,51)(8,52)(9,53)(10,54)(11,49)(12,50)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96), (1,34)(2,33)(3,32)(4,31)(5,36)(6,35)(7,75)(8,74)(9,73)(10,78)(11,77)(12,76)(13,38)(14,37)(15,42)(16,41)(17,40)(18,39)(19,47)(20,46)(21,45)(22,44)(23,43)(24,48)(25,50)(26,49)(27,54)(28,53)(29,52)(30,51)(55,80)(56,79)(57,84)(58,83)(59,82)(60,81)(61,89)(62,88)(63,87)(64,86)(65,85)(66,90)(67,92)(68,91)(69,96)(70,95)(71,94)(72,93), (1,30,13,20)(2,25,14,21)(3,26,15,22)(4,27,16,23)(5,28,17,24)(6,29,18,19)(7,86,94,82)(8,87,95,83)(9,88,96,84)(10,89,91,79)(11,90,92,80)(12,85,93,81)(31,46,41,51)(32,47,42,52)(33,48,37,53)(34,43,38,54)(35,44,39,49)(36,45,40,50)(55,70,66,74)(56,71,61,75)(57,72,62,76)(58,67,63,77)(59,68,64,78)(60,69,65,73)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,93,11,91,9,95)(8,94,12,92,10,96)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41)(43,49,45,51,47,53)(44,50,46,52,48,54)(55,61,57,63,59,65)(56,62,58,64,60,66)(67,78,69,74,71,76)(68,73,70,75,72,77)(79,88,83,86,81,90)(80,89,84,87,82,85), (1,56)(2,57)(3,58)(4,59)(5,60)(6,55)(7,51)(8,52)(9,53)(10,54)(11,49)(12,50)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96), (1,34)(2,33)(3,32)(4,31)(5,36)(6,35)(7,75)(8,74)(9,73)(10,78)(11,77)(12,76)(13,38)(14,37)(15,42)(16,41)(17,40)(18,39)(19,47)(20,46)(21,45)(22,44)(23,43)(24,48)(25,50)(26,49)(27,54)(28,53)(29,52)(30,51)(55,80)(56,79)(57,84)(58,83)(59,82)(60,81)(61,89)(62,88)(63,87)(64,86)(65,85)(66,90)(67,92)(68,91)(69,96)(70,95)(71,94)(72,93), (1,30,13,20)(2,25,14,21)(3,26,15,22)(4,27,16,23)(5,28,17,24)(6,29,18,19)(7,86,94,82)(8,87,95,83)(9,88,96,84)(10,89,91,79)(11,90,92,80)(12,85,93,81)(31,46,41,51)(32,47,42,52)(33,48,37,53)(34,43,38,54)(35,44,39,49)(36,45,40,50)(55,70,66,74)(56,71,61,75)(57,72,62,76)(58,67,63,77)(59,68,64,78)(60,69,65,73) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,93,11,91,9,95),(8,94,12,92,10,96),(19,28,23,26,21,30),(20,29,24,27,22,25),(31,42,33,38,35,40),(32,37,34,39,36,41),(43,49,45,51,47,53),(44,50,46,52,48,54),(55,61,57,63,59,65),(56,62,58,64,60,66),(67,78,69,74,71,76),(68,73,70,75,72,77),(79,88,83,86,81,90),(80,89,84,87,82,85)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,55),(7,51),(8,52),(9,53),(10,54),(11,49),(12,50),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96)], [(1,34),(2,33),(3,32),(4,31),(5,36),(6,35),(7,75),(8,74),(9,73),(10,78),(11,77),(12,76),(13,38),(14,37),(15,42),(16,41),(17,40),(18,39),(19,47),(20,46),(21,45),(22,44),(23,43),(24,48),(25,50),(26,49),(27,54),(28,53),(29,52),(30,51),(55,80),(56,79),(57,84),(58,83),(59,82),(60,81),(61,89),(62,88),(63,87),(64,86),(65,85),(66,90),(67,92),(68,91),(69,96),(70,95),(71,94),(72,93)], [(1,30,13,20),(2,25,14,21),(3,26,15,22),(4,27,16,23),(5,28,17,24),(6,29,18,19),(7,86,94,82),(8,87,95,83),(9,88,96,84),(10,89,91,79),(11,90,92,80),(12,85,93,81),(31,46,41,51),(32,47,42,52),(33,48,37,53),(34,43,38,54),(35,44,39,49),(36,45,40,50),(55,70,66,74),(56,71,61,75),(57,72,62,76),(58,67,63,77),(59,68,64,78),(60,69,65,73)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | ··· | 12H | 12I | 12J | 12K | 12L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 12 | 12 | 2 | 2 | 4 | 2 | 2 | 12 | 12 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 4 | ··· | 4 | 12 | 12 | 12 | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | C4○D4 | C4○D12 | S32 | S3×D4 | D4⋊2S3 | C2×S32 | D6.D6 | D6⋊D6 | D6.4D6 |
kernel | C62.85C23 | D6⋊Dic3 | C3×D6⋊C4 | C4×C3⋊Dic3 | C2×D6⋊S3 | C2×C32⋊2Q8 | D6⋊C4 | C3⋊Dic3 | C2×Dic3 | C2×C12 | C22×S3 | C3×C6 | C6 | C2×C4 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 8 | 1 | 2 | 2 | 1 | 2 | 2 | 2 |
Matrix representation of C62.85C23 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 4 |
0 | 0 | 0 | 0 | 9 | 2 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,1,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,11,9,0,0,0,0,4,2],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5] >;
C62.85C23 in GAP, Magma, Sage, TeX
C_6^2._{85}C_2^3
% in TeX
G:=Group("C6^2.85C2^3");
// GroupNames label
G:=SmallGroup(288,563);
// by ID
G=gap.SmallGroup(288,563);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,422,219,142,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^6=c^2=d^2=1,e^2=a^3*b^3,a*b=b*a,a*c=c*a,d*a*d=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d=a^3*c,e*c*e^-1=b^3*c,e*d*e^-1=b^3*d>;
// generators/relations